

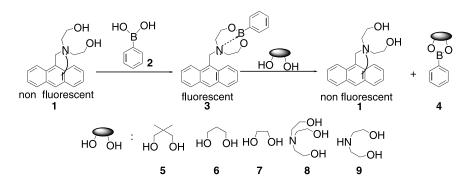
Tetrahedron Letters 43 (2002) 507-509

TETRAHEDRON LETTERS

A competition assay for diols using 9-(N,N-diethanolaminomethyl)anthracene and phenylboronic acid

Susumu Arimori and Tony D. James*

Department of Chemistry, University of Bath, Bath BA2 7AY, UK Received 11 September 2001; revised 6 November 2001; accepted 14 November 2001

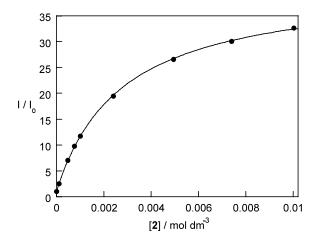

Abstract—9-(N,N-Diethanolaminomethyl)anthracene and phenyl boronic acid can be used in a competition assay for diols in chloroform. © 2002 Published by Elsevier Science Ltd.

Over the last few years we have been interested in developing molecular sensors using boronic acids.¹⁻⁴ The systems we are developing contain a receptor and reporter (fluorophore or chromophore) as part of a discrete molecular unit. This is however not the only approach towards boronic acid based sensors. Anslyn has recently demonstrated that boronic acid receptors and a separate reporter unit can be used in competitive assays.⁵⁻⁷ A competitive assay requires that the receptor and reporter (typically a commercial dye) associate under the measurement conditions. The receptor–reporter complex is then selectively dissociated by the addition of the appropriate guests. When the reporter dissociates from the receptor a measurable response is produced.

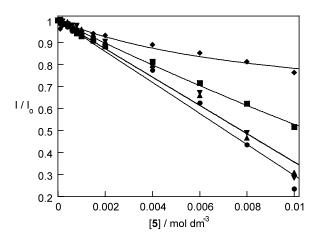
We are interested in such competitive systems because they reduce the synthetic complexity of the receptor. In a recent communication 9-(N,N-diethanolaminomethyl)anthracene 1 has been used as a fluorescent sensor for boronic acids in methanol.⁸ We were interested in using compound 1, but, our reinvestigation showed that 1 does not bind with phenylboronic acid 2 in methanol.⁹ This result was somewhat surprising since Hall and ourselves have recently used diethanolamine based polymers to bind with boronic acids.^{10,11} However, the loading of diethanolamine based polymers is achieved in THF, which is a non-protic polar solvent.

During our reinvestigation we discovered that chloroform was an excellent solvent in which to form a stable complex between 1 and phenylboronic acid 2. This led us to believe that we could yet develop a competitive sensor for diols using compound 1, but in chloroform and not methanol (Scheme 1).

The fluorescence titration of $1 (1.0 \times 10^{-6} \text{ mol dm}^{-3})$ with phenylboronic acid 2 was carried out in chloroform. The fluorescence intensity of 1 increased with added


Scheme 1. Proposed species in chloroform.

0040-4039/02/\$ - see front matter @ 2002 Published by Elsevier Science Ltd. PII: S0040-4039(01)02180-3


^{*} Corresponding author. E-mail: T.D.James@bath.ac.uk

phenylboronic acid 2 (Fig. 1). The fluorescence intensity change is due to formation of a cyclic boronate ester (complex 3) with a strong B–N bond. The stability constant K was $361\pm 6 \text{ mol}^{-1} \text{ dm}^3$ ($r^2 = 1.00$) determined using standard curve fitting.⁴

The fluorescence titrations of **3** ([**1**]= 1.0×10^{-6} mol dm⁻³ in the presence of [**2**]= 1.0×10^{-2} mol dm⁻³) with five different diols (2,2-dimethylpropylene glycol **5**, propyleneglycol **6**, ethyleneglycol **7**, triethanolamine **8**, and diethanolamine **9**) were carried out in chloroform (Fig. 2). The fluorescence intensity decreases with increasing concentration of diol. The fluorescence intensity change shows that the added diols can compete with fluorescent sensor **1** for the phenylboronic acid **2**. The decrease in fluorescence intensity has the following selectivity order: **5**>**9**>**8**>**7**>**6**.

Figure 1. Relative fluorescence intensity of **1** $(1.0 \times 10^{-6} \text{ mol} \text{ dm}^{-3})$ with different concentration of **2** $(0-1.0 \times 10^{-2} \text{ mol} \text{ dm}^{-3})$ in chloroform. λ_{ex} 370 nm, λ_{em} 417 nm.

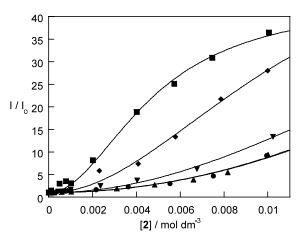

Figure 2. Relative fluorescence intensity of 1 $(1.0 \times 10^{-6} \text{ mol} \text{ dm}^{-3})$ with different concentrations of diols $(0-1.0 \times 10^{-2} \text{ mol} \text{ dm}^{-3})$ in the presence of 2 $(1.0 \times 10^{-2} \text{ mol} \text{ dm}^{-3})$ in chloroform. (\bullet) 5, (\bullet) 6, (\blacksquare) 7, (\blacktriangle) 8, (\bigtriangledown) 9, λ_{ex} 370 nm, λ_{em} 417 nm.

Fig. 3 shows the titration of 1 with phenylboronic acid 2 in the presence of diol $(1.0 \times 10^{-2} \text{ mol } \text{dm}^{-3})$. The fluorescence intensity of 1 increases with added phenylboronic acid 2. The increase in fluorescence intensity mirrors the order in Fig. 2 (6>7>8>9>5). The fluorescence change is caused by phenylboronic acid 2 binding with a diol, and inhibiting the formation of a complex between 1 and phenylboronic acid 2.

To confirm these observations, we recorded the ¹H and ¹³C NMR of 1 with and without phenylboronic acid 2 and also the ¹¹B NMR of phenylboronic acid 2 with 1, 1+5 and 5 in CDCl₃. The data obtained are summarised in Tables 1 and 2.

The ¹¹B NMR provides the clearest evidence that a complex is formed in chloroform. The boron signal of phenylboronic acid 2 appears at 32.27 ppm and shifts to 15.90 ppm on addition of 1, indicating that the boron changes hybridisation from sp^2 to $sp^{3,12}$ The boron signal of phenylboronic acid 2 with 1 and 5 appears at 29.00 ppm, the signal is similar to that for the complex formed between phenylboronic acid 2 and 5 at 29.72 ppm. The observed shift from 15.90 to 29.00 ppm is due to a change from complex 3 (sp^3) to complex 4 (sp^2) . Also, in the ¹³C NMR the methylene next to the oxygen of 1 shifts by 3.03 ppm on addition of phenylboronic acid 2, but when 5 is also added the shift is only 0.13 ppm. The ¹H NMR of **1** is also informative; the spectrum becomes broad on addition of phenylboronic acid 2, however, the spectra of 1+2+5is sharp. All of these NMR measurements indicate that in chloroform 1 and phenylboronic acid 2 form a fluorescent complex 3, this complex is then broken by the addition of diols (5-9) to produce complex 4.

In conclusion we have developed a new competitive PET sensor system for diols using **1** in chloroform.

Figure 3. Relative fluorescence intensity of **1** $(1.0 \times 10^{-6} \text{ mol} \text{ dm}^{-3})$ with different concentrations of **2** $(0-1.0 \times 10^{-2} \text{ mol} \text{ dm}^{-3})$ in the presence of diols $(1.0 \times 10^{-2} \text{ mol} \text{ dm}^{-3})$ in chloroform. (\bullet) **5**, (\blacklozenge) **6**, (\blacksquare) **7**, (\blacktriangle) **8**, (\triangledown) **9**, λ_{ex} 370 nm, λ_{em} 417 nm.

Table 1. ¹H and ¹³C NMR of 1 in CDCl₃ (shift on addition of 2 and 2+5)

	Assignment	1 (ppm)	1+2 (ppm)	1+2+5 (ppm)
¹ H (ppm) (300.2 MHz)	1	4.69	_a	4.70 (+0.01)
	2	2.80	_a	$2.80 (\pm 0.00)$
	3	3.52	_a	3.53 (0.01)
¹³ C (ppm) (75.5 MHz)	1	51.55	51.52 (-0.03)	51.61 (+0.06)
	2	55.85	55.99(+0.14)	55.87 (+0.02)
	3	59.65	62.68(+3.03)	59.78 (+0.13)

^a Proton spectra too broad to assign.

Table 2. 11 B NMR (96.3 MHz) of 2 in CDCl₃ (shift on addition of 1, 1+5 and 5)

2 (ppm)	1+2 (ppm)	1+2+5 (ppm)	2+5 (ppm)
32.27	15.90 (-16.37)	29.00 (-3.27)	29.72 (-2.55)

Acknowledgements

T.D.J. wishes to acknowledge the Royal Society, the EPSRC, and Beckman-Coulter for support. S.A. wishes to acknowledge Beckman-Coulter for support through the award of a Postdoctoral Research Fellowship. We would also like to acknowledge the support of the University of Bath.

References

- Arimori, S.; Bell, M. L.; Oh, C. S.; Frimat, K. A.; James, T. D. *Chem. Commun.* 2001, 1836–1837.
- Arimori, S.; Bosch, L. I.; Ward, C. J.; James, T. D. *Tetrahedron Lett.* 2001, 42, 4553–4555.

- Hartley, J. H.; James, T. D.; Ward, C. J. J. Chem. Soc., Perkin Trans. 1 2000, 3155–3184.
- 4. Cooper, C. R.; James, T. D. J. Chem. Soc., Perkin Trans. 1 2000, 963–969.
- Metzger, A.; Anslyn, E. V. Angew. Chem., Int. Ed. Engl. 1998, 37, 649–652.
- Lavigne, J. J.; Anslyn, E. V. Angew. Chem., Int. Ed. Engl. 1999, 38, 3666–3669.
- Cabell, L. A.; Monahan, M. K.; Anslyn, E. V. Tetrahedron Lett. 1999, 40, 7753–7756.
- (a) Wang, W.; Springsteen, G.; Gao, S.; Wang, B. *Chem. Commun.* 2000, 1283–1284. The same group have recently used commercial alizarin red S in a competition assay for fructose. See: (b) Springsteen, G.; Wang, B. *Chem. Commun.* 2001, 1608–1609.
- Arimori, S.; Ward, C. J.; James, T. D. Chem. Commun. 2001, 2018–2019.
- Arimori, S.; Hartley, J. H.; Bell, M. L.; Oh, C. S.; James, T. D. *Tetrahedron Lett.* 2000, *41*, 10291–10294.
- Hall, D. G.; Tailor, J.; Gravel, M. Angew. Chem., Int. Ed. 1999, 38, 3064–3067.
- Wiskur, S. L.; Lavigne, J. J.; Ait-Haddou, H.; Lynch, V.; Chiu, Y. H.; Canary, J. W.; Anslyn, E. V. Org. Lett. 2001, 3, 1311–1314.